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Abstract 

Over 15 million epilepsy patients worldwide have medically refractory epilepsy (MRE), i.e., 

they do not respond to anti-epileptic drugs. Successful surgery is a hopeful alternative for 

seizure freedom but can only be achieved through complete resection or disconnection of the 

epileptogenic zone (EZ), the brain region(s) where seizures originate. Unfortunately, surgical 

success rates vary between 30%-70% because no clinically validated biological markers of the 

EZ exist. Localizing the EZ has thus become a costly and time- consuming process during 

which a team of clinicians obtain non-invasive neuroimaging data, which is often followed by 

invasive monitoring involving days-to-weeks of EEG recordings captured intracranially 

(iEEG). Clinicians visually inspect iEEG data, looking for abnormal activity (e.g., low-voltage 

high frequency activity) on individual channels occurring immediately before seizures. They 

also look for abnormal spikes that occur on iEEG between seizures (“resting-state”). In the end, 

clinicians use <1% of the iEEG data captured to assist in EZ localization (minutes of seizure 

data versus days of recordings), missing opportunities to leverage these largely ignored data to 

better diagnose and treat patients. 

Intracranial EEG offers a unique opportunity to observe rich epileptic cortical network 

dynamics but waiting for seizures to occur increases patient risks associated invasive 
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monitoring. In this study, we aim to leverage iEEG data in between seizures by developing a 

new networked-based resting-state iEEG marker of the EZ. We hypothesize that when a patient 

is not seizing, it is because the EZ is inhibited by neighboring nodes. We develop an algorithm 

that identifies two groups of nodes from the resting-state iEEG network: those that are 

continuously inhibiting a set of neighboring nodes (“sources”) and the inhibited nodes 

themselves (“sinks”). Specifically, patient-specific dynamical network models (DNMs) are 

estimated from minutes of iEEG and their connectivity properties reveal top sources and sinks 

in the network, with each node being quantified by a source-sink index (SSI). We validate the 

SSI index in a retrospective analysis of 65 patients by using the SSI of the annotated EZ as a 

metric to predict surgical outcomes. SSI predicts with an accuracy of 79%, compared to the 

accuracy of clinicians being 43% (successful outcomes). In failed outcomes, we identify 

regions of the brain with high SSIs that were untreated. When compared to high frequency 

oscillations, the most common resting-state iEEG feature proposed for EZ localization, SSI 

outperformed in predictive power (by a factor of 1.2) suggesting SSI as a resting-state EEG 

fingerprint of the EZ. 
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Introduction  

Epilepsy is a chronic neurological disorder characterized by unprovoked, recurrent seizures 

and affects over 60 million people worldwide.1 Although about 70% of patients diagnosed with 

epilepsy respond positively to medication, 30% have seizures that cannot be controlled with 
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drugs.2–4 Patients with medically refractory epilepsy (MRE) commonly experience comorbid 

illnesses, an increased risk of mortality, lose their independence, and are frequently 

hospitalized, accounting for 80% of the $16 billion spent annually treating epilepsy patients.5–

11 

The most effective treatments for MRE are interventions that surgically remove or disconnect 

the epileptogenic zone (EZ), which is defined as the minimal area of brain tissue that is 

responsible for initiating seizures and whose removal (or disconnection) is necessary for 

complete seizure-freedom.12 A successful surgical outcome depends on the type of epilepsy 

and the ability to precisely identify and completely resect the EZ, but current surgical success 

rates vary significantly, rendering 20-80% of patients seizure free.13,14  

The objective of resective surgery is the complete removal, inactivation or disconnection of the 

EZ, with preservation of eloquent cortex. Before surgery, patients undergo a thorough 

evaluation process to determine the location and extent of the EZ. First, non-invasive methods 

such as scalp EEG, MRI, PET and SPECT are used to define the location and boundaries of 

the EZ. If non-invasive methods are discordant or inconclusive in localizing the EZ, invasive 

monitoring with intracranial EEG (iEEG) is often needed.15 Following electrode implantation, 

the patient remains in the hospital for several days to weeks waiting for a sufficient number of 

seizure (ictal) events because the current clinical standard primarily entails visually analyzing 

multiple of these events, looking for abnormal epileptic activities, in order to localize the EZ.16 

Specifically, two types of iEEG analyses are performed by highly qualified epileptologists17. 

Ictal (seizure) recordings are inspected to identify various epileptic signatures such as repetitive 

spikes, rhythmic slow waves or rapid fast intracortical frequencies.16,18 Based on these findings, 

a multidisciplinary team of clinicians then form a hypothesis on which electrodes are recording 

from the EZ. Ictal iEEG data are of higher value for localization purposes, but interictal 

(between seizure) iEEG data are also inspected to identify abnormal electrographic spikes. The 
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area of cortex that generates interictal spikes is referred to as the irritative zone and channels 

on which such spikes are observed are denoted as possible EZ nodes.15 However, it is often 

difficult to distinguish between propagated and locally generated discharges in iEEG 

recordings, making interictal spikes an unreliable iEEG marker for the EZ.16 Thus, the gold 

standard predominantly relies on inspecting seizure events and as such, more than 99% of the 

iEEG recordings captured invasively from patients are ignored.  

No iEEG markers are currently used in the clinical workflow to specifically assist in the 

identification of the EZ although many computational approaches have been proposed. In line 

with the standard of care visual analysis, most of the proposed methods depend on seizure data 

(e.g., 20,24–33). Nevertheless, using seizure independent (interictal) data has been of high interest 

as well, as this could significantly speed up the pre-surgical evaluation process. The most 

frequently proposed interictal marker of the EZ are high frequency oscillations (HFOs).34,38–42 

However, the reliability of HFOs as an iEEG marker of the EZ is debatable46 and by treating 

each channel independently, these methods fail to capture network properties of the brain. 

Additionally, a majority of the aforementioned methods depend on epileptiform signatures 

being observable in the signals rather than detecting the underlying dynamical properties of the 

epileptic network. 

In this study, we aim to leverage data captured between seizures to localize the EZ. We 

hypothesize that when a patient is not having a seizure, it is because the EZ is being inhibited 

by neighboring regions. We then develop and test a new interictal iEEG marker of the EZ by 

identifying two groups of network nodes from a patient's interictal iEEG network: those that 

are continuously inhibiting a set of their neighboring nodes (denoted as “sources”) and the 

inhibited nodes themselves (denoted as “sinks”). Specifically, we develop a computational tool 

that i) estimates patient-specific dynamical network models from interictal iEEG data and ii) 

uses source-sink connectivity properties of the models to identify pathological nodes (iEEG 
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channels) in the network that correspond to the EZ. We apply our algorithm to interictal iEEG 

snapshots from 65 patients treated across 6 clinical centers and evaluate performance by i) 

comparing the EZ channels identified by our algorithm to those identified by clinicians and ii) 

predicting surgical outcomes as a function of source-sink features by employing the random 

forest framework. 

 

Materials and methods  

Patient population 

Sixty-five adults (mean age 33.5 ± 13.0 (mean±s.d.) years) with medically refractory epilepsy 

who underwent intracranial EEG monitoring with stereotactic depth (SEEG) electrodes and 

received subsequent treatment were selected for the study. Treatment options include resective 

surgery (39 patients), laser ablation (17 patients) or responsive neurostimulation (RNS, 9 

patients). Patients were treated at one of the following institutions: Cleveland Clinic (CC), 

Johns Hopkins Hospital (JHH), University of Kansas Medical Center (KUMC), University of 

Miami Hospital (UMH), National Institutes of Health (NIH) or University of Pittsburgh 

Medical Center (UPMC). All patients had a minimum of one year follow-up subsequent to 

their last treatment procedure to determine treatment outcomes. Patients who had a follow-up 

period of less than one year and patients who did not receive treatment following presurgical 

evaluation (e.g., due to non-localizable EZ or EZ located in eloquent cortex) were excluded 

from the study. Patient population statistics are summarized in Table 1. The study was 

approved by the Institutional Review Board (IRB) at each clinical institution; Cleveland 

Clinic’s IRB, Johns Hopkins Medicine IRB, University of Kansas Human Research Protection 
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Program, University of Miami Human Subject Research Office, National Institutes of Health 

IRB, and the University of Pittsburgh IRB. All clinical decisions were made independent of 

this study. 

Data collection 

SEEG recordings 

The SEEG data were recorded using either a Nihon Kohden (Nihon Kohden America, Foothill 

Ranch, CA, USA) or Natus (Natus Medical Inc., Pleasanton, CA, USA) diagnostic and 

monitoring system at a typical sampling frequency of 1 or 2 kHz. A small subset of recordings 

was recorded at a sampling frequency of 500/512 Hz. The placement of each electrode was 

determined by the clinical team at each center based on patient history and available non-

invasive data. For each patient, a minimum of 20 seconds and a maximum of 16 minutes of 

interictal snapshots (average duration 5.3 ± 4.2 minutes) were randomly selected for analysis. 

Interictal periods were recorded at least one hour away from seizure events and no specific 

selection criteria (such as the presence or absence of epileptiform activity) were applied. 

Clinical annotations of the EZ 

At each epilepsy center, an EZ hypothesis was formulated by the clinical team based on the 

comprehensive patient data (non-invasive and invasive) gathered throughout the presurgical 

evaluation procedure independent of this study. Epileptologists describe the anatomical 

location and extent of the EZ by means of visual analysis of the invasive data by identifying 

the regions involved at seizure onset. The clinically annotated EZ (CA-EZ) is defined as the 

anatomical areas to be treated (resected, ablated or stimulated) to permanently extinguish the 

epileptiform activity, and includes SEEG channels demonstrating the earliest 

electrophysiological changes (generally characterized by low voltage fast activity) at the 
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beginning of an ictal event, as well as channels involved in early propagation of the seizure 

activity. 

Clinical classification of surgical outcomes 

Post-surgical clinical outcomes were classified by the clinical experts at each center according 

to the Engel Surgical Outcome Scale47 and the International League Against Epilepsy (ILAE) 

classification system.48 Successful surgical outcomes were defined as seizure free (Engel class 

I and ILAE scores 1-2) and failure outcomes as seizure recurrence (Engel classes II-IV and 

ILAE scores 3-6) at 12+ month post operation. Out of the 65 patients in the dataset, 28 patients 

had a successful surgical outcome whereas 37 patients experienced seizures after receiving 

treatment (failed outcome). Previous outcome studies have shown that patients with visible 

lesions on MRI have higher success rates as seizures likely originate from the lesion or its 

vicinity thus making the EZ better localizable.49 In contrast, non-lesional patients, and patients 

with extra-temporal or multi-focal epilepsy are at a higher risk for poor surgical outcomes.18,50–

52 To better define the clinical complexity of each patient, the clinical team assigned patients 

to three additional categories as follows: 1) lesional (visible lesions on MRI) or non-lesional, 

2) mesial temporal or extra-temporal, and 3) focal or multi-focal.    

Data pre-processing 

The data were bandpass filtered between 0.5 and 300 Hz with a fourth order Butterworth filter, 

and notch filtered at 60 Hz with a stopband of 2 Hz. A common average reference was applied 

to remove common noise from the signals. Finally, SEEG channels not recording from grey 

matter or otherwise deemed “bad” (e.g., broken or excessively noisy or artifactual) by visual 

inspection were discarded from each patient’s dataset. The continuous SEEG recordings were 

divided into non-overlapping 500-msec windows for modeling and feature extraction (see 
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details below). All data processing and analysis were performed using MATLAB R2020b 

(MathWorks, Natick, MA). Models for predicting surgical outcomes were built using 

Python3.6 (Python Software Foundation, Wilmington, DE). 

Sources and sinks in the epileptic brain network 

In contrast to the clinical gold standard which primarily involves a visual inspection of seizure 

events to localize the EZ, we performed our analysis exclusively on interictal, seizure-free data. 

This leads to a fundamental question: how can one identify where seizures start in the brain 

without ever observing a seizure? Our source-sink hypothesis states that seizures are 

suppressed because epileptogenic regions (denoted as sinks) are persistently being inhibited by 

neighboring regions (denoted as sources). The concepts of sources and sinks within a network 

is well established and has been applied to many analyses of network systems.53 In our 

application a "sink” node is a region in the brain network that is being highly influenced by 

other nodes but is not influential itself. In contrast, a “source” node is a region that is highly 

influential to other nodes but is not being influenced by other nodes. During rest, our conjecture 

is that the onset of seizure is prevented by a strong inhibition exerted on the EZ by its 

neighboring brain regions, which restricts the discharge and propagation of the seizure activity, 

i.e., EZ regions are sinks that cannot influence the rest of the network. When an epilepsy patient 

has a seizure however, the EZ is triggered and the EZ nodes transition into sources as they 

work together as a collective group to initiate and spread seizure activity. Fig. 1 shows a 

schematic representation of the source-sink hypothesis. 
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Clinical evidence supporting the source-sink hypothesis  

From a cytological perspective, the source-sink hypothesis is supported by evidence that 

seizures are prevented when the EZ is effectively inhibited by other brain regions. Glutamate, 

the primary excitatory neurotransmitter in the brain, has been implicated as a neurotoxic agent 

in epilepsy. A healthy brain function requires a balance between glutamate uptake and release 

to maintain the concentration of extracellular glutamate within a homeostatic range.54 Several 

studies have demonstrated the existence of elevated levels of extracellular glutamate in animal 

models of epilepsy55 and human patients.56 In addition, the presence of sodium dependent 

 

Figure 1. Source-sink hypothesis. Top: During interictal periods, epileptogenic nodes (shaded red 

region) are sinks that are strongly inhibited (influenced) by neighboring regions (sources) to prevent 

seizures. Bottom: During ictal (seizure) periods however, epileptogenic nodes become sources as 

they work together as a tightly coupled group to initiate and spread epileptogenic activity to other 

regions of the brain. 
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glutamate transporters (GLTs) is thought to be crucial to prevent accumulation of neurotoxic 

levels of glutamate in the extracellular space by clearing unbound extracellular glutamate. 

Findings suggest that fluctuations in the expression of such GLTs may play a role in the 

expression of epileptogenicity.57 In fact, previous studies have shown an increased number of 

GLTs in human dysplastic neurons and posit that it enables a “protective” inhibitory 

mechanism surrounding the epileptogenic cortex.58 Taking this evidence together, the 

inhibitory (the sink phenomena) and the excitatory (the source phenomena) events within the 

potential EZ have its biological substrate in the differential expression of glutamate transporters 

within the EZ. 

iEEG studies supporting the source-sink hypothesis 

iEEG studies also provide evidence that support our source-sink hypothesis. Several studies 

have demonstrated a high inward directed influence to the EZ at rest.59–61 In a recent study by 

Narasimhan et al.59 the authors state that high inward connectivity may reflect inhibitory input 

from other regions to prevent the onset and spread of seizure activity, but the direction of these 

signals may flip when seizure activity begins. This conjecture is further supported by iEEG 

studies in neocortical epilepsy demonstrating functional isolation of epileptogenic areas at 

rest62 and that increased synchronization in seizure-onset regions may be suggestive of an 

inhibitory surround.63 It has also been hypothesized that widespread network inhibition seen in 

temporal lobe epilepsy may have evolved to prevent seizure propagation63 and that a reduction 

of the inhibitory influence may lead to increased excitability and propagation of seizure 

activity.64 

In this study, we formalize the above evidence and build dynamical network models (DNMs) 

of the interictal iEEG activity to identify sources and sinks of the network from DNM 
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connectivity parameters. Source-sink indices are computed for each network node (see below) 

which are then used to predict treatment outcomes. 

Dynamical network models 

The DNMs are generative models that characterize how each iEEG channel dynamically 

influences the rest of the network. The interictal DNM takes the form of a linear time-varying 

(LTV) model that mathematically describes how each observed brain region (i.e., iEEG 

channel signal) interacts with other regions. The LTV DNM is composed of a sequence of 

linear time invariant (LTI) DNMs derived from smaller windows of the data. Each LTI model 

takes the following form:  

𝒙(𝑡 + 1) = 𝑨𝒙(𝑡) (1) 

Where 𝒙(𝑡)𝜖ℝ𝑁 is the state vector and represents the implanted iEEG channels, 𝑨𝜖ℝ𝑁𝑥𝑁 is the 

state transition matrix, which describes how the iEEG channels interact and how their activity 

evolves over time, and 𝑁 is the number of iEEG channels. In our previous work, we showed 

how DNMs can be derived using least squares estimation and how they accurately reconstruct 

the iEEG data (see Supplementary Fig. 1 for an example of actual versus simulated iEEG 

data).65 Importantly, systems theory can be employed to uncover the dynamics and properties 

of the DNMs which we will use to ultimately assist in accurately localizing the EZ. In these 

models, element 𝑨𝑖𝑗 describes how the present activity of channel 𝑖 influences the future 

activity of channel 𝑗. More generally, the 𝑖-th row of 𝑨 dictates the iEEG network’s cumulative 

functional effect on node 𝑖, while the 𝑗-th column determines the functional effect that the 

activity of node 𝑗 exerts on the entire network. We note that due to the resolution of the iEEG 

recordings, the DNMs cannot distinguish between excitatory and inhibitory connections in the 

network. Instead, we simply quantify the amount of “influence” one node has on another.  
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Identifying sources and sinks in the iEEG DNM 

We define two special groups of nodes in the iEEG DNM, subject to the source-sink 

hypothesis. Source nodes (blue nodes in Fig. 2A) are nodes that generally have high values (in 

magnitude) in their columns of the 𝑨 matrix (high influence on others) but low values across 

their rows (low influence from others). In contrast, sinks (pink nodes in Fig. 2A) exhibit the 

opposite pattern, high row values and low column values.  

Computing dynamic and constant source-sink indices 

Source-sink 2D-space: To identify the top sources and sinks in each patient’s DNM, we 

quantified each channel’s source-sink characteristics by computing the amount of influence to 

and from the channel based on the sum of the absolute values (also known as the 1-norm) 

across its row and column in 𝑨 (Fig. 2C), respectively. Once we obtained the total influence 

to/from each channel, we placed the channels in the source-sink 2D-space (SS-space, Fig. 2D) 

in order to compute a source-sink index (SSI) for each channel. When drawn in the SS-space, 

sources are channels located at the top left (blue circles), whereas sinks (pink circles) are 

located at the bottom right. 

Figure 2. A. A N-channel iEEG network example. B. Signals obtained from the implanted iEEG channels. C. 

Corresponding 𝑨 matrix, estimated from the signals in B. D. 2D source-sink representation of the iEEG network 

with sink index (𝑠𝑖𝑛𝑘𝑖), source influence (𝑠𝑜𝑢𝑟𝑐𝑒𝑖) and sink connectivity (𝑐𝑜𝑛𝑛𝑖 ) labeled. 
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Next, we computed SSI for each channel. The SSI is a product of three metrics subject to the 

source-sink hypothesis: 

Sink Index: The first criterion from our source-sink hypothesis requires an iEEG channel to be 

a top sink in the iEEG network to be considered an EZ channel. The sink index captures how 

close channel 𝑖 is to the ideal sink (see Fig. 2D, pink star). The larger the sink index, the more 

likely the channel is a sink.  

Source Influence: The second criterion requires an EZ channel to be highly influenced by the 

top sources of the iEEG network. The source influence index quantifies how much the top 

sources influence channel 𝑖. A high source influence suggests that channel 𝑖 receives strong 

influence from the top sources in the interictal DNM. 

Sink Connectivity: The third and final criterion from our source-sink hypothesis for a node to 

be considered an EZ node is that it is highly connected to other sinks so that it can collaborate 

to generate a seizure. The sink connectivity index quantifies the strength of connections from 

the top sinks to channel 𝑖, and thus, the higher the sink connectivity, the stronger influence 

channel 𝑖 receives from the top sinks in the network.  

Source-sink index (SSI): Finally, a source-sink activation index was computed for each iEEG 

channel in each window as the product of sink index, source influence and sink connectivity. 

In line with the source-sink hypothesis stated above, the SSI is high if all three indices are high. 

Therefore, we expect EZ nodes to have a high SSI and non-EZ nodes to have a lower SSI 

during interictal periods. 

Unlike seizure activity, interictal activity is relatively stable, with little deviation from a 

baseline value over time. As a result, there is little variation in the sequence of 𝑨𝑤 matrices 

and consequently in the source-sink behavior of individual channels across windows during 

interictal periods. Thus, we also computed a constant, average 𝑨 matrix to represent each 
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patient’s interictal DNM and used it to compute a set of constant source-sink indices for each 

patient. We refer the reader to Supplementary Methods, section 1.2 for further details of the 

analysis. 

Predicting surgical outcomes using source-sink indices 

To evaluate the source-sink indices as interictal iEEG markers of the EZ, we tested their 

efficacy in predicting surgical outcomes following the same procedure as Li et al24 (see 

Supplementary Fig. 2 for a schematic of the experimental design) and compared performance 

against that of clinicians as well as HFOs, the most common interictal iEEG marker of the EZ. 

Specifically, we modeled the probability of a successful surgical outcome, 𝑝𝑠, as a function of 

the three SSI metrics (sink index, source influence and sink connectivity) using a random forest 

(RF) classifier. We computed the distribution of constant feature values in two sets of channels: 

i) the CA-EZ and ii) all other channels not labeled as CA-EZ (CA-NEZ). Feature distributions 

of each set were summarized with the mean and standard deviation, resulting in 12 possible 

features presented to the RF classifier. Next, we performed a tenfold nested cross-validation 

(CV), considering a set of hyperparameters, and performed statistical analysis (described 

below) on the final classification performance to determine the most robust feature 

representation.  

Predicting surgical outcomes using HFOs 

We compared the predictive value of the source-sink indices to that of HFOs,66,67 which have 

been actively explored as interictal biomarkers of the EZ. We detected HFOs in the interictal 

data segments using the root-mean-square detector developed by Staba et al68 (see 

Supplementary Methods, section 1.4 for details).  
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HFO rate (number of HFOs per minute per channel) is amongst the most commonly used 

metrics to test the value of HFOs as a biomarker of the EZ (e.g., 38,42,45,61,68–72 to name a few). 

Thus, we chose to compare the performance of the source-sink indices to that of HFO rate by 

modeling 𝑝𝑠 as a function of HFO rate following the exact same paradigm as for the source-

sink indices described above. 

Clinical annotations of CA-EZ and SSI correspondence 

To further evaluate the source-sink index as an iEEG marker of the EZ, the clinical team at 

each center reviewed the source-sink results for each patient and ranked the clinical 

correspondence between the CA-EZ and the nodes that have high SSIs. Specifically, for each 

patient, clinicians at the corresponding center were presented with a SS-space (Fig. 2D), which 

showed the location of each implanted iEEG channel in the source-sink space, as well as the 

strongest connections from the top sources and sinks and where they point to. The clinical team 

then compared the source-sink results to the clinically annotated EZ regions and rated the 

clinical correspondence between the two sets as either: 1) agreement, defined as a) strong 

agreement if there was as a significant overlap with the clinically annotated EZ or b) some 

agreement if there was some overlap with the CA-EZ regions or the channels with the highest 

SSI were within the same functional network as the CA-EZ , or 2) no agreement, defined as no 

overlap with CA-EZ regions. 

Statistical analysis 

Each RF model (source-sink and HFO) was validated using a tenfold CV. In order to control 

against overfitting of the models, we used a nested CV scheme, where we split the dataset into 

a training, validation and a held-out test dataset.24 In each such split, the hyperparameters were 

tuned using the training and validation data (70% of the dataset), and performance was then 
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evaluated on the test dataset by applying a varying threshold to the model's output and 

computing a receiver operating characteristic (ROC) curve, which plots true positive rates 

against false positive rates for various threshold values. We then selected the threshold that 

maximized prediction accuracy in each split and evaluated performance by comparing each 

patient’s predicted outcome to the actual outcome.  

We used five metrics to measure model performance: i) area under the curve (AUC) of the 

ROC, ii) prediction accuracy iii) precision, iv) sensitivity, and v) specificity (see metric 

definitions in Supplementary section 1.6). We report results of the ten CV folds (mean ± s.d.) 

below. Finally, we compared the performance metrics of the source-sink indices to those of 

HFO rates using a paired two-sample t-test. In all t-tests performed, the null hypothesis was 

that the two distributions have equal means and the alternate hypothesis was that the means are 

different. Lastly, outcome predictions of the two models were compared using a McNemar’s 

test for paired nominal data.  For all tests, a p-value ≤ 0.05 was considered to be statistically 

significant.  

Data availability  

We released the raw iEEG data for patients from XX, XX, and XX in the OpenNeuro repository 

in the form of BIDS-iEEG (insert link here). Due to restrictions on data sharing from CC, we 

were unable to release the iEEG data that we received from this site. Dataset from CC is 

available upon request from authors at the CC.  



18 

 

Results  

The source-sink index highlights CA-EZ regions in patients with 

successful outcomes  

From each patient’s interictal DNM, we quantified source-sink characteristics of every iEEG 

channel by computing its dynamic SSI in every 500-msec sliding-window of the interictal 

recording (see Fig. 3A for examples of 1-minute snapshot of iEEG data and the corresponding 

spatiotemporal SSI heatmaps for three patients with different surgical outcomes). Fig. 3B 

shows the constant interictal SSI of each iEEG contact, overlaid on each patient’s implantation 

map and the placement of each channel in the 2D source-sink space is shown in Fig. 3C. 

A high SSI indicates that the channel is a top sink that is both highly connected to other sinks 

and strongly influenced by the top sources of the network. In patient 1, the iEEG channels with 

the highest SSI match the channels identified as the EZ by clinicians (three out of three). In 

this patient, all three CA-EZ channels were included in the surgical treatment (laser ablation) 

which led to a complete seizure freedom. In patient 2 however, only two out of thirteen CA-

EZ regions have high SSI values whereas the other iEEG channels with high values were not 

a part of the CA-EZ and thus were not treated during surgery. This patient did not become 

seizure free post-treatment. Finally, patient 3 demonstrates an interesting case. This patient had 

two surgeries; first a laser ablation of superior frontal and cingulate gyri (contacts on L’ and 

G’ electrodes) which resulted in seizure recurrence, and later a resection of pre- and post-

central as well as supplementary motor areas (M’ electrode) which led to a complete seizure 

freedom. Interestingly, when the iEEG channels first identified as CA-EZ (CA-EZ1) are 

considered, none of these channels are amongst the top 10% of channels with highest SSI. 
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However, the majority of the channels with highest SSI correspond to the second identified 

CA-EZ (CA-EZ2; M’ electrode) that ultimately led to a successful outcome in this patient.  

Identifying channels with highest SSI 

As Fig. 3A shows, the source-sink metrics remain consistent with little variation of the SSI of 

each channel across the interictal recordings, Thus, we computed a constant 𝑨 matrix to 

represent each patient’s interictal DNM. From this matrix, we identified the top sources and 

sinks in the iEEG network by computing the total influence to and from each channel and 

placing the channels in the 2D source-sink space (see Fig. 3C for three patient examples) based 

on their total influence. In patients with successful surgical outcomes, the CA-EZ channels are 

expected to be a subset of the top sinks (Fig. 3C, top). The blue and pink arrows indicate the 

strongest connections from the top sources and sinks, respectively, and the channels they point 

to. The most likely candidates of the true EZ, based on the source-sink hypothesis, were the 

subset of top sinks that were highly connected to other sinks and strongly influenced by top 

sources. In general, the top sources and sinks point to the CA-EZ channels in success patients 

(Fig. 3C, top), whereas they may also connect to other channels in patients with failed surgical 

outcomes (Fig. 3C, middle). In patient 3 (Fig. 3C, bottom), who continued to have seizures 

after the first surgery (failed outcome), the CA-EZ1 are not amongst the top sinks in the iEEG 

network, whereas the majority of CA-EZ2, the set of channels that led to seizure-freedom post-

surgery, are top sinks. In addition, the latter set of channels are highly influenced by the top 

sources and sinks in the network and thus are considered likely candidates of the true EZ by 

the source-sink algorithm. 
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Figure 3. Three patient examples; Patient 1 (top) had a successful surgical outcome. Patient 2 (middle) 

had a failed surgical outcome. Patient 3 (bottom) had two surgeries. After the first surgery, the patient 

continued to have seizures (failed outcome) but became seizure free (successful outcome) after the 

second surgery. A. A 1-minute interictal iEEG snapshot (left) and the resulting SSI of every channel 

(right). Channels are arranged from highest to lowest stationary interictal SSI. CA-EZ channels are 

colored red. For patient 3, the CA-EZ from the second surgery are colored orange. Only the top 30% of 

channels are shown for better visualization purposes, and all channels not shown have low SSI values. In 

the success patient (top), CA-EZ channels have the highest SSIs, whereas only 2 out of 13 CA-EZ 

channels have a high SSI in the failure patient (middle). In patient 3 (bottom), the CA-EZ that rendered 

the patient seizure free has the highest SSIs. B. Stationary SSI of each channel overlaid on the patients’ 

implantation maps. Red/orange boxes outline CA-EZ channels. C. 2D source-sink space. Top sources are 

located in the top left and top sinks in the bottom right. CA-EZ channels are colored red. The second CA-

EZ in patient 3 is colored orange in the bottom panel. The most influential connections from sources 

(blue arrows) point to the sinks and the strongest connections from sinks (pink arrows) point to other 

sinks in patient 1 (top), whereas the top sources point to nodes other than top sinks in the failure patient 

(middle). Top sinks also point to these other nodes. 
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Temporal stability of sources and sinks during interictal periods 

To verify the stationarity of the SSI over time, we test the sensitivity of the source-sink analysis 

to duration and timing of the interictal snapshot. Specifically, we computed how many of the 

top 10% channels with highest constant source-sink indices were captured in windows of five 

different durations, 𝑤𝑠 =  {1, 2, 3, 5, 10} minutes, and compared to how many channels were 

captured by chance (see further methodological details in Supplementary section 1.3). As Fig. 

4 shows, over 90% of the top channels were captured on average for all indices – independent 

of the timing or duration of the interictal snapshot – compared to a much fewer channels 

(around 10%) captured by chance (𝑝 ≪ 0.05 for all metrics). This suggests that given any 

snapshot of interictal data, even as short as 1 minute, the results would be highly comparable 

to those obtained from the entire interictal snapshot for each patient.  
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Source-sink metrics outperform HFOs in predicting surgical 

outcomes 

As stated above, the SSI, and consequently the three metrics (sink index, source influence and 

sink connectivity) used to compute the SSI, are significantly higher in CA-EZ channels 

compared to the rest of the iEEG network in patients with successful surgical outcomes but not 

necessarily in failure patients (𝑝SSI
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 8.26 × 10−7 and 𝑝SSI

𝑓𝑎𝑖𝑙𝑢𝑟𝑒
= 0.151, see other p-

values in Supplementary Table 1). Taking advantage of this assumption, we built a RF model 

to predict the probability of a successful surgical outcome for each patient using i) the source-

 

Figure 4. Temporal stability of source-sink indices. Darker colors represent distributions of source-sink indices 

whereas lighter (transparent) colors represent channels captured by chance. On average, over 90% of channels 

are captured for all indices, independent of timing or duration of the interictal snapshot selected. Increasing the 

window size does not change the percentage of captured top channels significantly. In comparison, only around 

10% of top channels are captured by chance. The asterisks indicate a statistically significant difference. 
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sink metrics and ii) HFO rate, for comparison. The resulting test-set ROC curves are shown in 

Supplementary Fig. 2. Figs. 7A and B show the predicted probabilities of success (𝑝𝑠) across 

all CV-folds, using the source-sink and the HFO model, respectively. The dots are color-coded 

based on each patient’s surgical outcome. A decision threshold of 𝛼 = 0.5 was applied to the 

estimated probabilities to predict each patient’s outcome. Using the source-sink indices (Fig. 

7A), the majority of success patients are above the threshold, with 𝑝𝑠 > 0.5 whereas most 

failure patients are below it. In contrast, there was not a clear separation between success and 

failure patients using HFO rate (Fig. 7B).  

Fig. 7C compares the performance of the source-sink metrics and HFOs in predicting surgical 

outcomes. The source-sink metrics outperformed HFO rate with significantly higher AUC, 

accuracy, average precision and sensitivity (𝑝𝐴𝑈𝐶 = 0.0096, 𝑝𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.0442, 𝑝𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

0.0023 and 𝑝𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 2.03 × 10−4). Although the source-sink index had a higher 

specificity on average, both models performed similarly (𝑝𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 0.7846). Note that 

HFO rate was computed across the entire interictal snapshot provided for each patient. The 

longer the snapshot, the more likely it is to capture HFOs. In contrast, although the source-sink 

metrics were also computed by averaging across the same recordings for each patient, we 

showed above that the results remain consistent independent of both timing and length of the 

recording.  
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Figure 5. A. Predicted probability of success (𝑝𝑠) by the source-sink model across all CV folds. Each dot 

represents one patient and dots are colorcoded by surgical outcome. S=success, F=failure. The dashed blue line 

represents the decision threshold applied to 𝑝𝑠 to predict outcomes. For the source-sink model, the majority of 

success patients (red dots) have 𝑝𝑠 values above the threshold whereas failure patients (black dots) generally 

have 𝑝𝑠 values below the threshold.  B. Predicted probability of success 𝑝𝑠) by the HFO model across all CV 

folds. For the HFO model, there is not as clear separation between the success and failure patients, with both 

groups having 𝑝𝑠 above and below the decision threshold, thus resulting in a lower prediction accuracy. C. 

Performance comparison of the source-sink metrics (red) to HFO rate (black). Boxes show distributions of each 

metric across the 10 CV folds. The asterisks indicate a statistically significant difference. The source-sink metrics 

outperformed HFO rate with significantly higher AUC, accuracy, average precision and sensitivity (𝑝𝐴𝑈𝐶 =
0.0096, 𝑝𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.0442, 𝑝𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0.0023 and 𝑝𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 2.03 × 10−4) whereas both models had a 

comparable specificity (𝑝𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 0.7846). The source-sink metrics had an AUC of 0.86 ± 0.07 compared 

to an AUC of 0.71 ± 0.10 using HFO rate. The source-sink model also outperformed HFOs in terms of average 

precision, which weighs the predictive power in terms of the total number of patients, with an average precision 

of 0.88 ± 0.06 compared to 0.71 ± 0.09 for the HFO rate. Using the source-sink indices, a threshold of 𝛼 = 0.5 

applied to 𝑝𝑠 for each subject rendered a test-set accuracy of 79.0 ± 9.1%, compared to a considerably lower 

accuracy of 65.5 ± 11.4% using HFOs and an even lower clinical success rate of 43% in this dataset. The 

biggest performance difference between the two models was in terms of sensitivity (true positive rate) where the 

source-sink model outperformed HFO rate by more than 50% with a sensitivity of 0.78 ± 0.09. However, both 

models performed similarly in predicting failed outcomes correctly, where the source-sink model had a slightly 

higher specificity of 0.80 ± 0.16 compared to 0.77 ± 0.20 for the HFOs.  
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Source-sink metrics are correlated with treatment outcomes 

The separation between the 𝑝𝑠 distributions of success versus failure patients is greater for the 

source-sink model compared to the model using HFO rate, and consequently so is the model’s 

ability to discriminate between the two outcome possibilities (𝑝 = 0.007). Fig. 6 compares the 

predicted probability of success on the test set in success versus failure patients of the source-

sink metrics (red) and HFOs (black). Each box represents the distribution of 𝑝𝑠 values across 

all CV folds. When further broken down by Engel class (Fig. 6Error! Reference source not 

found.B) or ILAE score (Fig. 6C), we observed a decreasing trend of 𝑝𝑠 as the outcome score 

(and thus also the severity of post-operative seizure outcome) increased using the source-sink 

metrics. In contrast we did not see this clear separation of 𝑝𝑠 values using the HFO model, 

which had a much greater overlap between classes.  

 

Figure 6. A. Distributions of 𝑝𝑠 as predicted by the source-sink model (red) and HFO model (black). There is a 

clear separation of the distributions for successful cases versus failed cases for the source-sink model whereas the 

distributions obtained using HFO rate overlap and consequently the predictive power of HFO rates is lower. B. 

Distributions of 𝑝𝑠 stratified by Engel Class (Engel I = successful outcome, Engel 2-4 = failed outcome). For the 

source-sink metrics, there is a general trend of decreasing 𝑝𝑠values as the Engel class (and thus also severity of 

surgical outcome) increases. In contrast, this does not hold for the HFO rate.  C. Distributions of 𝑝𝑠 stratified by 

ILAE scores (ILAE 1-2 = successful outcome, ILAE3-5 = failed outcome) follow a similar trend to those observed 

for the Engel class in B. S = successful surgical outcome, F = failed surgical outcome. 
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Top SSI regions have high correspondence to CA-EZ in success 

patients but lower in failed patients  

The treating neurologist at each center was given the SS-maps for each patient from the 

corresponding center and asked to rate the clinical correspondence between the CA-EZ and 

regions with top SSIs. Fig. 7 shows the clinical correspondence scores between the two sets of 

EZ regions for success versus failure patients across all centers. Correspondence scores of 

“some” or “strong” agreement were lumped into “agreement” for visualization purposes. In 

general, there was more agreement between the CA-EZ and regions with high SSIs in patients 

with successful outcomes compared to patients with failed surgical outcomes, which means 

that the source-sink analysis often highlighted other, non-treated potential onset regions, in 

failure patients. In fact, clinicians agreed with the algorithm in 26 out of 28 (93%) patients, 

whereas only 54% of patients with failed outcomes were considered in agreement. When 

categorized by Engel scores, the rate of agreement decreased as the Engel class increased, 

which likely also reflects the increased difficulty of treatment in these patients. A similar trend 

was observed for the ILAE scores, with a higher rate of disagreement corresponding to a higher 

ILAE score.   
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CA-EZ regions are sinks at rest but become sources during seizures 

in success patients 

In addition to computing the source-sink metrics across interictal recordings, we also 

investigated source-sink properties of the iEEG network during ictal periods. We did not 

receive ictal snapshots from all centers, so only a subset of the patient population (𝑛 = 29) 

was included in this part of the analysis. Fig. 8 demonstrates the source-sink characteristics of 

the iEEG network as the brain moves from resting state (interictal) towards a seizure in one 

success (A) and one failure (B) patient. For each patient, we computed each iEEG channel’s 

SSI in 500-msec windows of one interictal and one ictal recording. Note that the two snapshots 

are not consecutive in time as the interictal snapshot is typically recorded hours before the 

seizure event. As Fig. 8A shows, the CA-EZ channels have a high SSI in the success patient 

during rest, suggesting they are top sinks strongly influenced by top sources. However, during 

 

Figure 7. Clinical correspondence between CA-EZ and top SSI regions. A. Clinical correspondence stratified 

by surgical outcome. For almost all success patients, clinicians agree with the channels with highest SSI scores. 
The agreement is much lower in failure patients. Note that in some failure patients, clinicians may not be able 

to treat all or a proportion the CA-EZ (e.g., if it is located in eloquent cortex). In those cases, the source-sink 

algorithm may agree with clinicians even though the patient had a failed surgical outcome. B. Clinical 

correspondence stratified by Engel class. The rate of agreement is highest for Engel 1 (complete seizure-

freedom) but decreases as the Engel class increases. No agreement scores follow the opposite trend. C. Clinical 

correspondence stratified by ILAE scores follow an overall similar trend with decreasing agreement (and 

increasing disagreement) as ILAE score increases. 
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and right after seizure, the same channels have a low SSI, that is, they are exhibiting a strong 

source-like behavior, which further supports the source-sink hypothesis. In contrast, only a 

small subset of CA-EZ channels (2 out of 13) are amongst the top sinks in the patient with a 

failed surgical outcome (Fig. 8B) and there is little modulation of the SSI of these channels. 

The temporal SSI modulation is summarized in Fig. 8C and D. We computed the average 

source-sink index for two groups of interest: i) CA-EZ channels, and ii) all other channels not 

labeled as CA-EZ (CA-NEZ). Each curve was obtained by computing the average source-sink 

index of each channel group, in each window. The curves were smoothed by computing the 

index across 10-second windows instead of 500 msec. As Fig. 8C shows, the CA-EZ channels 

have a much higher SSI compared to the rest of the network during the interictal period. 

However, this does not hold true for the failure patient (Fig. 8D), where the mean index of the 

CA-EZ is not separable, or even slightly lower than the mean index of the CA-NEZ channels. 
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Fig. 8E and F show an example of the 2D source-sink space for the success and failure patients, 

respectively, computed in 10-second windows at different points in time relative to seizure 

onset. Despite the temporal stability of the source-sink metrics across interictal recordings, the 

source-sink properties of the iEEG network modulate around seizure events. In success patients 

(Fig. 8E) we frequently observed a movement of CA-EZ towards top sources as the brain 

progresses towards a seizure. Right before and at the onset of seizure however, the CA-EZ 

channels become sinks for a short period, perhaps as the rest of the network makes one last 

attempt to prevent the seizure from starting. During and right after seizure, the CA-EZ channels 

Figure 8. Source-sink characteristics as the brain moves from resting state towards a seizure. Two patient 

examples. A. Source-sink index of every channel during interictal (left) and ictal (right) periods, separated by 

the solid yellow line. Channels are arranged from highest to lowest average interictal SSI. CA-EZ channels are 

colored red. Only the top 30% of channels are shown for better visualization purposes, and all channels not 

shown have low SSI values. B. Average source-sink index of four CA-EZ versus CA-NEZ channels. In this 

success patient the CA-EZ channels have a much higher SSI compared to CA-NEZ channels during the interictal 

period. The SSI of CA-EZ channels drops significantly during seizure, as these channels become sources to 

initiate and spread seizure activity. D. Source-sink index of every channel over time. Only 2 out of 13 CA-EZ 

channels have a high source-sink index in this failure patient. E. Average source-sink index of the two groups. 

In this failure patient CA-EZ cannot be distinguished from CA-NEZ. E. Movement of CA-EZ channels in the 

2D source-sink space over time. CA-EZ channels are top sinks during the interictal period (left), but move 
towards sources as the brain progresses towards a seizure. F. In this failure patient, there is little movement of 

CA-EZ channels as the brain moves from interictal to ictal state. 
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are again exhibiting a strong source-like behavior. The same cannot be said about the CA-EZ 

channels in failure patients (Fig. 8F), where there was little movement of these channels in the 

SS-map over time.  

Finally, Fig. 9 compares the temporal SSI modulation in success versus failure patients. For 

each patient, SSI was computed in four predefined windows: a) a 30 second window of the 

interictal recording, b) 60-30 seconds before the seizure event, c) during the seizure event, and 

d) 60-90 seconds after the end of seizure. For each set of channels, indices were normalized to 

the average SSI of the entire network at rest (window a). At each time point, we then computed 

the mean ± standard error of SSI across all success patients (𝑛 = 14) and all failure patients 

(𝑛 = 15). In the success patients, (Fig. 9, top) the CA-EZ have a significantly higher SSI 

compared to the rest of the channels in the network in all windows except after the end of 

seizure (𝑝𝑎 = 0.0132, 𝑝𝑏 = 0.0029, 𝑝𝑐 = 0.0015, 𝑝𝑑 = 0.4240). In contrast, the CA-EZ 

channels are not separable from the CA-NEZ channels at any time point (𝑝𝑎,𝑏,𝑐,𝑑 ≫ 0.05) in 

failure patients. 
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Discussion  

We proposed a novel source-sink index as a dynamical-network-based interictal iEEG marker 

to assist in the localization of the EZ. The index was developed based on the hypothesis that 

seizures are suppressed when the epileptogenic regions are effectively being inhibited by 

neighboring regions. The source-sink hypothesis is supported by clinical evidence based on the 

levels of glutamate and glutamate receptors in the brain55–58 and iEEG studies that have 

demonstrated strong inward (inhibitory) connectivity to the EZ regions during rest.59,60,63,64 We 

evaluated the predictive value of the SSI by a) rating the correspondence between the 

 

Figure 9. Temporal SSI modulation in CA-EZ versus CA-NEZ channels. Indices were averaged over all CA-EZ 

and all CA-NEZ for each patient. Each curve shows the mean ± s.d. across 14 success patients (top) and 15 

failure patients (bottom). CA-EZ channels have a higher SSI compared to CA-NEZ channels in success patients, 

but not in failure patients. The asterisks indicate a statistically significant difference between CA-EZ and CA-

NEZ channels. a = 30 second window of the interictal recording, b = 60-30 seconds before the seizure event, c 

= during the seizure event, and d = 60-90 seconds after the end of seizure. 
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hypothesized CA-EZ and regions with high SSIs and b) building a random forest to model the 

probability of a successful surgery as a function of the source-sink metrics, and compared the 

performance to that of HFOs, a commonly used interictal iEEG feature. The analysis was 

performed on data from 65 patients treated across 6 clinical centers. Out of 28 success patients 

in our dataset, the source-sink algorithm agreed (rated as “strong” or “some” agreement) with 

clinicians in 26 (93%) of patients. In contrast, only 54% of patients with failed outcomes were 

considered in agreement with clinicians, suggesting that in failure patients, the source-sink 

algorithm highlighted other areas than the ones identified and treated as potentially 

epileptogenic. Further, in terms of predicting surgical outcomes, the source-sink metrics 

outperformed HFO rate, with higher AUC, accuracy, precision, sensitivity and specificity, 

predicting 79% outcomes correctly compared to a 65% accuracy of the HFO model.  

Challenges 

Validating iEEG markers of the EZ  

At present, identification of the EZ is a complicated and subjective process that is often 

unsuccessful, thus resulting in post-treatment recurrence of seizure activity in a large 

proportion of patients. In order to increase the likelihood of a successful treatment outcome, 

there is a great need to identify and validate reliable biomarkers that can determine the extent 

and location of the EZ with high precision and accuracy. However, validation of such markers 

remains challenging because the EZ is a theoretical concept that cannot be directly measured15 

and thus no ground truth of its exact location exists. Instead, the best estimate one can obtain 

is retrospectively, by assuming the EZ was included in the resected cortex if surgical treatment 

renders the patient seizure free. To complicate matters even further, a complete removal of the 

EZ is not the only basis of a successful surgery and although removing the EZ is typically 



33 

 

necessary to achieve lasting seizure freedom, it may not always be sufficient (e.g., a 

disconnection of the EZ from the early spread regions may also produce good outcomes). Post-

operative outcome measures (e.g., Engel scores) are also based on subjective judgement and 

may be interpreted differently from center to center. Consequently, results from different 

centers cannot be compared easily.48 Further, insufficient sampling of electrodes may also lead 

to inaccurate results as there is no way for the iEEG marker to capture the EZ if it is not covered, 

but this is a limitation of all computational approaches. In the case of the source-sink algorithm, 

the results may also be less accurate if the sources, i.e., the regions inhibiting the EZ, are not 

covered. 

Why the source-sink algorithm may disagree with clinicians in success 

patients 

For a majority of success patients, the source-sink algorithm was in agreement with the 

clinicians regarding the location of the EZ (Fig. 7), and only 2 out of 28 success patients were 

deemed in disagreement. In addition to completely removing the EZ, a disconnection of the EZ 

from the rest of the epileptogenic network or removal of the regions responsible for early spread 

of the seizure activity may also lead to a successful surgical outcome. Thus, it is possible that 

in those patients, the treated areas may have included the early spread regions instead of the 

onset zone and therefore are not overlapping with the areas highlighted by the source-sink 

algorithm.  

Why the source-sink algorithm may agree with clinicians in failure patients  

With that said, surgical treatment may also fail for various reasons and in more complex cases, 

removing the EZ may not be sufficient to achieve seizure freedom. Further, in some patients, 

new regions may become epileptogenic post-surgery. Consequently, the source-sink algorithm 
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may be in full or some agreement with the treated areas, even in patients with failed outcomes. 

Additionally, incorrect or inaccurate localization of the EZ and incomplete treatment of these 

regions most likely leads to seizure recurrence after surgery. This can occur in cases where the 

implanted electrodes are not covering the true EZ, in which case it is impossible (for clinicians 

and algorithms) to detect the true EZ, or if the EZ is widely spread. Finally, in some patients, 

a complete resection of the EZ cannot be performed without causing a new, unacceptable 

deficit to the patient (e.g., if the EZ is located in eloquent cortex). Instead, palliative treatments, 

including RNS or deep brain stimulation, have been increasingly used in patients who are not 

candidates for resective surgery. These treatments can be effective in reducing seizure 

frequency, but only a minority of patients experience complete seizure control.73–75  

Other interictal iEEG markers of the EZ  

The current gold standard visual analysis of hundreds of iEEG recordings to localize the EZ is 

time consuming and subject to individual expert biases. Although many interictal iEEG 

markers of the EZ have been proposed, no computational tools are used in the clinical workflow 

today to specifically assist in localizing the EZ. With epilepsy increasingly understood as a 

network disorder,19–22 a profound knowledge of the underlying network dynamics and 

interactions between brain regions is essential to understand how the internal properties of the 

brain network can generate or prevent seizures. An important limitation of the majority of 

proposed algorithms lies in the fact that they fail to capture these internal properties of the 

iEEG network. Instead, most existing methods either compute single-channel-based iEEG 

features such as spectral power in frequency bands, spike counts or HFO rates (e.g., 34,38,40,41,43–

45,76–78), thus not capturing dependencies between channels, or they apply network-based 

measures (20,21,32–37,79–81 to name a few) to capture pairwise dependencies (correlation or 

coherence) between the iEEG channels, but fail to characterize the underlying dynamics of the 
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network. Network-based measures (e.g., node centrality, degree distributions or distance 

measures) are summary statistics computed from an adjacency matrix that is used to represent 

the pairwise dependencies between any two iEEG channels. The main downside of these 

however, is that each network can be mapped to multiple adjacency matrices (because 

connectivity between two nodes can be defined in numerous ways), and many different 

adjacency matrices can have identical summary statistics. Thus, such metrics are not based on 

well formulated hypotheses of the role of the EZ in the network and are not easily interpretable 

either. 

HFOs are some of the most studied iEEG features as a potential interictal marker of the EZ 

(e.g. 38,41,42,45,67,82–96). In the context of epilepsy, there is evidence that regions that belong to 

the EZ have higher HFO rates compared to non-epileptogenic regions82 and studies have 

suggested that removal of regions that generate high rates of HFOs correlates with good post-

surgical outcome.42,83,84,86–88,95,96 However, there still remains considerable controversy 

surrounding HFOs as a valid marker of the EZ. Other studies have not found a predictive value 

in the removal of these regions84,88 and two meta-analyses of existing studies concluded that 

the evidence of HFOs as a predictor of surgical outcome is weak.85,97  

Furthermore, several studies have also questioned the reproducibility and reliability of HFOs 

as a marker.46,87,88,98,99 First, no consensus has been reached on the exact features used to 

describe HFOs, because the exact underlying cellular mechanism by which they are generated 

remains unknown,87 which gives rise to variability in the features chosen to define HFOs 

among current studies.100 Second, HFOs can also occur in non-epileptogenic regions and even 

in patients without epilepsy.46 These physiologic, non-epileptic HFOs have features that 

overlap with those of pathological HFOs101–103 and differentiation between the two types 

remains an unresolved issue in iEEG studies.104–107  
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Finally, HFO rates are not stable over time. Gliske et al. tested the consistency of channels 

exhibiting the highest number of HFOs across different 10-minute segments of data.46 They 

showed that the location of the highest HFO-rate channels varied greatly when different 

segments were used, thus questioning the reliability of such marker. In contrast, we showed 

above that the source-sink analysis returns consistent results independent of recording length 

and is in fact, robust to any random selection of interictal activity (Fig.4). Further, we repeated 

the analysis with and without the removal of large artifacts from the SEEG snapshots and found 

that the results held regardless.  

Translating an iEEG marker into the clinical workflow 

In order to translate an iEEG marker of the EZ into clinical workflow, it is critical to perform 

rigorous testing and validation to ensure the marker meets the stringent criteria needed for it to 

serve as a reliable source of information for clinical decision making. We sought to evaluate 

the performance of the SSI on a diverse group of patients, reflecting different epilepsy 

etiologies, treatment methods and post-treatment outcomes. We collected our iEEG data from 

six different clinical centers. As such, our dataset is comprised of a heterogeneous patient 

population, spanning varying case complexities (such as lesional or non-lesional, and temporal 

or extra-temporal epilepsy), epilepsy types (focal and multi-focal) and clinical practices, while 

at the same time reflecting the standard of care success rates of approximately 50% on average.  

Generalizability of the SSI 

In order to properly validate any biomarker, it is important to determine the range of conditions 

under which it will give reproducible and accurate results. Similarly, a profound understanding 

of when the tool performs well and when and why it fails is critical. For example, some patients 

present with a lower clinical case complexity (such as a visible lesion on MRI or some types 
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of temporal epilepsy) and have as such higher chances of good surgical outcomes. A tool that 

performs well on these patients is not guaranteed to translate well to more complex cases. 

Importantly, although not shown here, we show in Appendix 2.3 (Supplementary Figs. 3-6) 

that the SSI is agnostic to the clinical complexity of each patient (as defined by our clinical 

team) as well as treatment methods, suggesting that the tool is highly generalizable. Further, 

the performance was very similar across all centers (Supplementary Figs. 4 and 5), indicating 

that the tool generalized well across different datasets and the overall probabilities and scores 

were not biased by any particular center. 

Conclusions and future work 

Due to the spatial resolution of the iEEG contacts, the DNMs cannot distinguish between 

excitatory and inhibitory connections and thus the only information we can glean from the 

models is the amount of influence between any two nodes in the network. The high predictive 

performance of the SSI does however suggest that the sources are likely dominated by 

inhibitory influence, consistent with the source-sink hypothesis. To better understand the 

excitatory or inhibitory nature of the connections, future work may entail complementing the 

iEEG data with resting-state fMRI (rs-fMRI), which has a poorer temporal resolution, but 

generally a higher spatial resolution compared to iEEG.108 Thus combining iEEG and rs-fMRI 

could provide a better understanding of the directionality of the network connections.109 

In patients with electrodes targeting the hippocampal region, the hippocampal contacts were 

frequently identified as top sinks in the iEEG network. The hippocampus is a highly connected 

structure, with many bidirectional connections within and to surrounding regions110 both intra- 

and inter-hemispherically.111 Further, studies of mesial temporal lobe epilepsy (MTLE) have 

demonstrated the existence of strong connections within the hippocampal network bilaterally 

in both epileptogenic as well as non-epileptogenic hippocampi.110,112,113 As such, the 
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hippocampus is a structure that is highly influenced by other regions and by its nature acts as 

a sink in the brain network regardless of its epileptogenicity. Moreover, we found that in MTLE 

patients, contacts recording from the contralateral hippocampus commonly exhibited a stronger 

sink-like behavior than the epileptogenic hippocampus. This connectivity asymmetry across 

hemispheres is in line with findings of other studies, which have demonstrated a decreased 

functional connectivity within the epileptogenic hippocampal networks with a concurrent 

increased connectivity in contralateral hippocampal pathways, possibly reflecting 

compensatory mechanisms with strengthening of alternative pathways in these patients.110,114–

116 To that end, the connectivity patterns and natural sink-like behavior of the hippocampus 

need to be taken into consideration as results of the source-sink analysis are reviewed and 

interpreted. Although the tool performs well with the hippocampal electrodes included in the 

datasets, as reflected by our results, there might be cases where these electrodes could simply 

be removed (e.g., clinical experts are certain that the hippocampus is not involved in seizure 

onset – and hippocampus was only targeted to rule out temporal epilepsy or determine spread 

– and thus would ignore these electrodes in their standard of care analyses). Our preliminary 

testing has showed that inclusion or removal of hippocampal electrodes does not alter the 

source-sink behavior of other contacts in the iEEG network and thus, a future augmentation of 

the tool could include an option to remove the hippocampal electrodes before the visual 

interpretation of the source-sink results is performed by clinicians.  

Finally, the algorithm was developed and validated on adult patients only. Although we expect 

the results to hold in the pediatric population, an important next step would be a robust 

evaluation of the SSI on interictal iEEG data from a large population of children with MRE.  

In conclusion, our results suggest that the SSI, a metric entirely based on the properties of the 

iEEG network at rest, captures the characteristics of the regions responsible for seizure 

initiation. SSI is a promising marker of the EZ and could significantly improve surgical 
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outcomes by increasing the precision of EZ localization. Furthermore, by removing the need 

to capture seizures, the tool has the potential to substantially reduce invasive monitoring times, 

avoiding further risks to patients and reducing costs to hospitals. 
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